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AN ANALYTICAL SOLUTION TO THE PROBLEM OF THE
THERMOMECHANICAL STATE OF AROD OF LIMITED LENGTH, WITH
SIMULTANEOUS PRESENCE OF END TEMPERATURES AND LATERAL HEAT
EXCHANGE

uBYfIIP KbLTY AJIMACY 9CEPIHAEI'T O3EKTIH TEPMOMEXAHUKAJIBIK
KYUIH KOHE YHITAPBIHJATBI ) KEPI'UIIKTI TEMIIEPATYPAHBI 3EPTTEY

WCCJIEAOBAHUE TEPMOMEXAHUYECKOI'O COCTOSIHUSI CTEPKHS
HAXOJSIIENCS TOJ BO3ECTBUEM BOKOBOI'O TEIIJIOOBMEHA U
JOKAJBHBIX TEMIIEPATYP HA KOHIIAX

Abstract. This article deals with the problems of numerical study of the thermomechanical
state of rods. On the basis of the fundamental law on the change in the amount of heat, an equation
of the established thermal conductivity for a horizontal rod of limited length and a constant cross
section is constructed through a fixed cross-section in a time ot. In this case, different temperatures
are set at the two ends of the investigated rod, and heat exchange with the surrounding medium
takes place through the lateral surface. In addition, the investigated rod is made of thermal
protective material ANV-300. The determining law of the distribution of temperature, of all the
corresponding deformations and stresses, and also of the displacement along the length of the
investigated rod. The values of the thermal elongation and the resulting axial force are calculated.

In a complex thermal zone, bearing components of reactive and hydrogen engines, nuclear
and thermal power stations, processing lines of processing industries, as well as internal combustion
engines operate. The reliable operation of these structures will depend on the conditions of the
thermoelectric power of the bearing components. Therefore, this study is devoted to a numerical
study of the state of the thermoelectric power of the structural components in the form of rods of
limited length, bounded at both ends.

The proposed computational algorithm is based on the principle of energy conservation. In
this case, all types of integrals in the functional energy formulas are integrated analytically. In this
case, the numerical solutions obtained will have high accuracy.

Keywords: the temperature, the rod, the thermal energy, the algorithm.
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Annarna.  JKbuty MemmepiHiH ©3TepyiHiH HeTi3Trl 3aHbIHA CYHEHE OTBIPHIN, TYPaKThI
KodpdunuenTi Oap KapamailbiM auddepeHnInanIplK TeHAey CaNbIHIBL, OJ 3epTTENETIH HIEKTeYi
Y3BIHIBIKTAFbl MIBIOBIKTHIH Y3bIHABIFBI OOHMBIMEH TeMIIEpaTypaHbl 061y epiciH cunaTTaiapl. byiip
OeTiHiH ayJaHbl OOWBIHIIA OHBI KOpIIaFraH OPTaMEH KbULy alMacy Kypedi. ©3eKTiH eKi YIIbIHIA
OPTYPJIi KEPTUTIKTI TeMIlepaTypa OepisireH.

AHBIKTaIFaH: TEMIEpaTypaHbIH Tapally epici, IIBIOBIKTHIH y3apy IIaMachl, maiaa OoyaThiH
OChTIK KYII IIaMachl, naedopmainds MeEH KepHeyAiH OapiblKk KOMIIOHCHTTEPIHIH Tapaiy
3aHJIBUTBIKTAPhI, CEPIiM/Il KO3FAJIBIC KOMIIOHEHTIHIH Tapaiy epici.

¥ CBHIHBUIFAH €CeNTey ATOPUTMI SHEPTHSHBI CaKTay NMPHHIUIIIHE HeriznenreH. by skarnaiiia
(GyHKIMOHANABI 3HEprus (opMynalapblHIaFbl HHTErpAIapAblH OapiblK TYypJepi aHAIUTHKAIBIK
TYypae Oipikripinesi. by jxarmaiina aablHFAH CaHBIK IICTIIMIEP KOFaphl JAIIKKE e 00JIabl.

Tyiiin ce3aep: >Xbuly MeJIIepi, JKbUTy OTKI3TIIITIK, KbUIy alMacy KOd((UIUEHTI, KbLTY
KEHEI01, CepIIMILIIK MOIYJI.

AnHoTanusi. Ha ocHOBe (QyHIaMEHTANbHOTO 3aKOHA MW3MEHEHHUS KOJMYecTBa Teria
MMOCTPOCHO OOBIKHOBCHHOE U depeHInabHOe YpaBHCHHE C TOCTOSHHBIM KOA((HUIIMESHTOM,
KOTOPOE€ OIMCHIBAET II0JIE PACIpPEACIICHHUs] TeMIlepaTypy IO JJIMHE HCCIEAYEMOr0 CTEpPKHS
orpaHudeHHON JIMHBL. [1o miomann 60KOBOI MOBEPXHOCTH KOTOPOTO MPOUCXOIUT TETNIOOOMEH ¢
OKpYy»Karoluii ee cpenoid. Ha qByX KOHIaX cTep KHs JaHbl pa3HbIE JIOKAJIbHBIEC TEMIIEPATYPHI.

OmnpeneneHsl: 1oJie paclpeaeaeHus: TeEMIepaTyphl, BEIUYMHA YJIMHEHUS CTEPKHS, BEJIMUMHA
BO3HUKAIOIIETO OCEBOT0 YCHIIMS, 3aKOHBI paclpeielieHusi BCeX COCTABISIOMMX Aedopmanuu u
HaIIpsDKEHUH, TI0JIE PACIPEIEIeHUs YIPYTOd COCTABIAIOIIEH ITEPEMELICHUS.

[IpemyiaraeMplil BBIYMCIUTENbHBIA ATOPUTM OCHOBAaH HAa NPHUHIIMIE COXPAHEHHUS SHEPTUU.
IIpy sTOM BCe TUNBI MHTErpajoB B (YHKIUOHAJIBHBIX (OpMynax 3HEPrMM HHTETPUPYIOTCS
aHanutudecku. [Ipu 3TOM MoaydeHHbIE YUCICHHBIE PelIeHHs OyIyT UMETh BHICOKYIO TOUHOCTb.

KiroueBble cji0Ba: KOJMYECTBO TEIJIa, TEIUIONPOBOAHOCTh, KO3()(UIIMHET TeriooOMeHa,
TEIJIOBOTO PACIIUPEHUS, MOAYJIb YIIPYTOCTH.

We consider a horizontal rod of limited length and a constant crossed section whose area
F(cm?). He axis ox of the rod is directed from the left to the right which coincides with the axis of
the rod. At the left end of the rod, the temperatureT; [c°], is given, and the direction T,[c°]. In this
case T, > T,. Through the lateral surface of the rod, heat exchange takes place with its surrounding

medium. In this case, the heat transfer coefficient h [%] and the ambient temperature T,.[c°].
The calculation scheme of the process is shown in Fig. 1
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Cture 1. The calculation scheme of the problem

It is required to determine:
1) The law of temperature distribution along the length of the investigated rod.
2) Determine the amount of thermal elongation of the test rod.

In case of pinching the two ends of the rod, it is necessary to determine:

3) The arising axial forces.
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4) The field of distribution of the components of deformations and stresses.
5) The field of distribution of displacement.

The physical and mechanical properties of the material of the rod under investigation are
characterized by the coefficients of thermal conductivity K, [%] thermal expansion «a [Cio] and

elastic modulus E [C’%] If we take into account that the investigated process of the rod material is

much larger than the cross-sectional area, then it is possible to neglect the temperature gradients in
the directions perpendicular to the axis of the rod without significant error, and take the temperature
constant at each point of the cross section perpendicular to the axis . With this assumption, a
temperature with a function of only one independent variable x, and the field of temperature
distribution along the length of the rod can be described by an ordinary differential equation.

According to the fundamental law of thermophysics, the amount of heat passing through the
time dt through the cross sections of the rod at a distance of x [cm] from its left end will be

~KyxF = dt (1)
where T'(x) — is the temperature distribution field, which is still unknown.

At that time, the amount of heat passing through the time dt through the cross section, located
at a distance x + dx[cm] from the left end of the rod, will be equal to

dT | d?T
—KpF (5 + T dx)dr )

In addition, the portion of the rod enclosed between the sections spaced from the left end of
the rod at a distance of x and x + dx[cm], due to the thermal conductivity process, acquires during
the time dt the amount of heat equal to the difference of the indicated quantities (1) and (2) e.

In addition, the portion of the rod enclosed between the sections spaced from the left end of
the rod at a distance of x and x + dx[cm], following the heat conduction process, acquires in the
time dt the amount of heat equal to the difference of the indicated amounts (1) and (2),

2
KuxF  dr 3)
It should also be noted that during this same time, a heat loss equal to

hPdx(T — T,.)dt 4)

where P[cm] is the cross sectional.

But since the process we are investigating is steady-state, i.e. stationary, then from (3-4) we
have

2

Ky F 5 dxdt = hPdx (T — T,)dr (5)

From this, for the problem under consideration, we determine the equation for the steady-state
heat conductivity

d?T _ hP(T—Ty)

dx? KxxF (6)
For convenience, we introduce the notation
2 _ _hP 7
KyxF
considering that the ambient temperature T,. = const, 0 < x < [, then we have
d(T-Toc) — E (8)

dx dx
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. d?’T  d*(T-T,
hence we also obtain — = (—"C), 0<x<l 9)
dx? dx?

Taking (7) and (9) into account, we rewrite (6)

2
! (zszOC) - a2 (T - Toc) =0 (10)
This equation is an ordinary differential equation with constant coefficients. Then its general
integral will be
T—T,, =Ce*™ +Ce™, 0<x<lI
(11)
where C; and C, are constants of integration. Their values are determined from the boundary
conditions at the ends of the rod.

(x =0) =Ty[c°];T(x = 1) = T,[c°]; (12)
Ty —Toe = CL + G } (13)

T, = Toe = Cre® + Cre™®
From these systems, the values C; and C,.
C, = (TZ_TOC)_(Tl_Toc)e_al

1= 2sh(al) (14)
C, = (Tl_Toc)eal_(TZ_Toc)

2~ 2sh(al)

Substituting (14) into (11), we determine the field of temperature distribution along the length
of the rod under consideration, taking into account the operating conditions [2]

T(x, h, Ky, P, F, Tyo) = Too + (TZ'T°°)Sh(axzz(f;)‘ﬂ’“”"“”"‘) 0<x<I

(15)
On the basis of the fundamental theory of thermal physics, it is possible to determine the
elongation of the rod under consideration if it is pinched by one end and the other is free

Al, =}aT(x)dx=a'jT<x)dx=a{ ool +[(T, ~TooNeh(al)-1)/a— (T, - T, )L~ ch(al) /@) ]/ sh(al)} (16)

In the event that both ends of the rod are clamped, an axial compressive force R is produced
in it, which will be directed along its axis ox. Its value is determined by the corresponding Hooke
law [3]

AlLEF  oFF
TI = {Tocl + [(TZ _Toc )(ch(al)—l)/a— (Tl _Too)(l_ Ch(al)/a)]/Sh(al)} (17)

In this case, according to the length of the investigated rod, the distribution law of the
thermoelastic component of the voltage t can be determined according to the generalized Hooke's
law

R=-

F I
Then the distribution law of the corresponding thermo-elastic component of the deformation
is also determined according to Hooke's law

e =7 == T+ [T, T en(al)-1/a~ (T, - T, )@~ ch(al) /@)l shiah} o)

Further, according to the theory of thermal physics, the law of distribution of the temperature
component of deformation

R 5 1+ [(T, T, Xeh(al)-1)/a - (T, ~T,.)(L— ch(al) /2)}/ sh(al)} (18)
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o (0 ==aT () =T, + T ToN@+ T -ToJshal =X |y (20)
sh(al)
Then the temperature component of the voltage is already determined according to Hooke's law
&, (X) = E&, (X) = —aE{TOC , (T =T Jsh(a) ;((Ti)‘T“)Sha(' - X)},o <x<I 21)
sh(a

After this, according to the theory of thermo elasticity, it is possible to determine the law of
distribution of the elastic component of deformation

&(0=¢ —& (x)=—%{Tocl +[(T, ~ToXeh(al)-1)/a— (T, - T,.)(L - ch(al) /@) ]/ sh(al) }+

; {Tm (T, =T, )sh(@x) + (T, - T, )sha(l - X)},o <] (22)
sh(al)

Then, according to Hooke's law, we can determine the law of distribution of the elastic
component of the voltage

0, () =E¢,(x)=0-0;(X)= —aI—E{Toc' +[(T, =T fehlal)-2)/a~ (T, - T, )L ch(al) @)/ sh(al) +

(T, T Jsh(ax) + (T, =T, )sha(l - x)
sh(al)

atE{TOC + },OS x<|

23)
Finally, we can determine the law of distribution of the displacement of the cross-section of
the rod. It is determined from the Cauchy relations

gx(x):g—i;éu =I£X(X)dX+C (24)

Here the value of the constant C is determined from the pinning conditions U(x=0)=0. Then we
have

U(X):—O{TOC+ chal -1 1 —2TOC)}X+a T X+ — [, —Toc)chax—(Tl—Toc)]}
shal ashal
25)
(04
+ T, —T )chal - (T, -T
aShaI [( 1 oc) ( 2 oc)]
Then we have 1=100c™m, K,, = 100@?20; hzlochTCO; T,. = 20°C; a=125-10" Cio;

E:2-1066':n—gz; T1=600°C; T.=100°C; r=1cm.

Then we get the results shown in Figure-2. In Figure-2, a) the law of the distribution of
temperature along the length of the rod is given. The resulting law of distribution of deformation
components is given in Figure-2, b). It can be seen from the figure that the thermo-elastic
component of the deformation €-is constant along the entire length of the rod.

At that time, the elastic component of the deformation &(x), on stretches near the jamming,
has a stretching character. In the middle section of the rod, &(x), has a compressive character. The
temperature component of the deformation &r(x) along the entire length has a compressive
character. Its maximum value corresponds to the highest temperature.
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The nature of the component stresses is similar to the corresponding deformations. This is
clearly seen from Figure-2, c). In Figure-2, d) the distribution field for the displacement of the
cross-sections of the rod is given. It can be seen from the figure that the cross-sections of the rod in
section 0 < x <6,9 are moving in the direction of the x axis. At that time, the largest displacement
Umax1 = 0.0043092 cm corresponds to the coordinate cross-section of which x =8 cm;

The cross sections of the rod located in the section 70 <x <l = 100 cm move against the
direction of the axis ox. Here, the largest displacement Umaxx=-0,0016472 cm corresponds to a cross
section whose coordinate is X = 94 cm. Moreover, Umaxi/#/Umaxz/=2,61639;

a)The temperature
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Figure - 2. The laws of distribution of temperatures, strains, stresses and displacements
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